Test Post testing the elements & adjusting the things

Published on by David Giger

Brass is similar to bronze, another alloy containing copper that uses tin instead of zinc.[2] Both bronze and brass also may include small proportions of a range of other elements including arsenic, lead, phosphorus, aluminum, manganese, and silicon. Historically, the distinction between the two alloys has been less consistent and clear,[3] and modern practice in museums and archaeology increasingly avoids both terms for historical objects in favor of the more general "copper alloy".[4]

Brass has long been a popular material for decoration due to its bright, gold-like appearance; being used for drawer pulls and doorknobs. It has also been widely used to make utensils due to properties such as having a low melting point, high workability (both with hand tools and with modern turning and milling machines), durability, and electrical and thermal conductivity.

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

DEFAULT

Corrosion-resistant brass for harsh environments h2

Corrosion-resistant brass for harsh environments h3

Corrosion-resistant brass for harsh environments h4

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

WIDE

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

MEDIUM

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

HALF_LEFT

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

HALF_RIGHT

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

SMALLER_LEFT

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

SMALLER_RIGHT

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

A_THIRD_FIRST

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5]

A_THIRD

Brass is still commonly used in applications where corrosion resistance and low friction are required, such as locks, hinges, gears, bearings, ammunition casings, zippers, plumbing, hose couplings, valves, and electrical plugs and sockets. It is used extensively for musical instruments such as horns and bells, and also used as a substitute for copper in making costume jewelry, fashion jewelry, and other imitation jewelry. The composition of brass, generally 66% copper and 34% zinc, makes it a favorable substitute for copper based jewelry, as it exhibits greater resistance to corrosion. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials.[5] DEFAULT
Miriam Musterfrau, Head of Departement, Company
Image placeholder

fulll

Image placeholder

wide

Image placeholder

medium

Image placeholder

small

Image placeholder

smallest

Image placeholder

half-left

Image placeholder

half-right

Image placeholder

smaller-left

Image placeholder

smaller-right

Image placeholder

a-third-first

Image placeholder

a-third

Wow look at this

Use this element to make call to action at the end of the blogpost. This is the CTA row. Probably needs some redesigning.

And weirdly enough it doesn't have a button.

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

Image placeholder

half-left

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

HALF_RIGHT

Image placeholder

smaller-left

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

HALF_RIGHT

Image placeholder

a-third

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

A-THIRD

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

A_THIRD

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

SMALLER_RIGHT

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

HALF_LEFT

Image placeholder

In October 1999, the California State Attorney General sued 13 key manufacturers and distributors over lead content. In laboratory tests, state researchers found the average brass key, new or old, exceeded the California Proposition 65 limits by an average factor of 19, assuming handling twice a day.[13] In April 2001 manufacturers agreed to reduce lead content to 1.5%, or face a requirement to warn consumers about lead content. Keys plated with other metals are not affected by the settlement, and may continue to use brass alloys with a higher percentage of lead content.[14][15]

SMALLER_LEFT

Image placeholder

smaller right

Recent blog posts

Smart farming tractor
Smart Farming: Enhancing agriculture yield with IoT

Discover how IoT increases agriculture efficiency by helping farmers and land planners better monitor their crops and livestock.

Read the post
Company news blog preview
Akenza welcomes Lothar Pauly as new chairman of the board

We would like to introduce and welcome our new chairman of the board, Lothar Pauly.

Read the post
Expertplan blog preview
Introducing enhanced customization and advanced features with the akenza Expert plan

We are excited to announce the release of the new Expert plan as the latest addition to the akenza SaaS offering.

Read the post